MATH-329 Nonlinear optimization Exercise session 3: Convexity

Instructor: Nicolas Boumal TAs: Andrew McRae, Andreea Musat

Document compiled on September 24, 2024

1. Strict and strong.

- 1. Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is convex but not strictly convex.
- 2. Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is strictly convex but not strongly convex.
- 3. Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is strictly convex yet not bounded below.
- 4. Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is strictly convex and bounded below yet does not have a minimum.
- **2.** Quadratic functions. Let $\mathcal{E} = \mathbb{R}^n$ with the usual inner product and let $f(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x + c$.
 - 1. Show that f is convex if and only if $A \succeq 0$.
 - 2. Show that f is strictly convex if and only if $A \succ 0$.
 - 3. Show that f is μ -strongly convex if and only if $A \succeq \mu I$. What is the best choice of μ is terms of A?
- **3.** Jensen's inequality. Let \mathcal{E} be a linear space. Let $f: \mathcal{E} \to \mathbb{R}$ be a convex function. Show that for all $x_1, \ldots, x_n \in \mathcal{E}$ and any $\lambda_1, \ldots, \lambda_n \geq 0$ such that $\lambda_1 + \cdots + \lambda_n = 1$ we have

$$f(\lambda_1 x_1 + \dots + \lambda_n x_n) \le \lambda_1 f(x_1) + \dots + \lambda_n f(x_n).$$

Hint: proceed by induction on n.

We call the quantity $\lambda_1 x_1 + \cdots + \lambda_n x_n$ a convex combination of the points x_1, \dots, x_n . The result that you proved shows that if X is a discrete random variable taking values $x_1, \dots, x_n \in \mathcal{E}$ with probabilities p_1, \dots, p_n respectively, then we have

$$f(\mathbf{E}[X]) \le \mathbf{E}[f(X)],$$

where \mathbf{E} denotes mathematical expectation. This inequality generalizes to any random variable X.

- **4.** Log-sum-exp. If you prefer you can consider the following exercise with k=2.
 - 1. Show that the log-sum-exp function is convex from \mathbb{R}^k to \mathbb{R} (t > 0 is a fixed, real parameter):

$$f(x) = t \log \left(\sum_{i=1}^{k} e^{x_i/t} \right). \tag{1}$$

This function is often used in applications because it is a smooth approximation of the maximum function. Indeed:

2. With $\bar{x} = \max_i x_i$ show that

$$\bar{x} \le f(x) = \bar{x} + t \log \left(\sum_{i=1}^k e^{\frac{x_i - \bar{x}}{t}} \right) \le \bar{x} + t \log(k). \tag{2}$$

Thus, the smaller t is, the better the approximation. However:

3. From an optimization perspective (for example, if we plan to use gradient descent), can you see a reason why we should not take t too small?

Note: on a computer, it is necessary to use expression (2) rather than expression (1) to compute f (and its derivatives). Indeed, expression (1) can lead to overflow when t is small because it involves computing exponentials of possibly large numbers. In contrast, expression (2) only involves exponentials of nonpositive numbers. Still, even with expression (2), evaluating f and its derivatives can get tricky numerically when t is small.

- 5. Norms. Let \mathcal{E} be a Euclidean space.
 - 1. Show that any norm on \mathcal{E} is convex.
 - 2. Show that any squared norm on \mathcal{E} is convex.

Interestingly, a norm is never differentiable at x=0. Do you see why? However:

3. Let $\langle \cdot, \cdot \rangle$ be an inner product on \mathcal{E} and $\| \cdot \|$ the associated norm (that is, $\|x\| = \sqrt{\langle x, x \rangle}$ for all $x \in \mathcal{E}$). Prove that the squared norm $x \mapsto \|x\|^2$ is differentiable.

A norm may not be differentiable if it is not derived from an inner product. Can you come up with an example?