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1. Strict and strong.
1. Give an example of a function f: R — R which is convex but not strictly convex.
2. Give an example of a function f: R — R which is strictly convex but not strongly convex.
3. Give an example of a function f: R — R which is strictly convex yet not bounded below.

4. Give an example of a function f: R — R which is strictly convex and bounded below yet
does not have a minimum.

2. Quadratic functions. Let & = R" with the usual inner product and let f(z) = Jz" Az +
bx+c.

1. Show that f is convex if and only if A > 0.
2. Show that f is strictly convex if and only if A > 0.

3. Show that f is u-strongly convex if and only if A > pI. What is the best choice of p is terms
of A?

3. Jensen’s inequality. Let £ be a linear space. Let f: £€ — R be a convex function. Show
that for all zq,..., 2, € £ and any Ay,..., A\, > 0 such that \; +---+ X\, = 1 we have

Hint: proceed by induction on n.

We call the quantity Ajxy + -+ + A\,x, a convex combination of the points x,...,x,. The
result that you proved shows that if X is a discrete random variable taking values z1,...,x, € €
with probabilities py, ..., p, respectively, then we have

FEX]) <E[f(X)],

where E denotes mathematical expectation. This inequality generalizes to any random variable

X.



4. Log-sum-exp. If you prefer you can consider the following exercise with k = 2.

1. Show that the log-sum-exp function is convex from R¥ to R (¢ > 0 is a fixed, real parameter):

f(z) =tlog (Z e“/t> . (1)

This function is often used in applications because it is a smooth approximation of the maximum
function. Indeed:

2. With z = max; x; show that

k —

QSSf(CE)ZZL‘—Fthg(ZGZit_I) <z +tlog(k). (2)

i=1
Thus, the smaller ¢ is, the better the approximation. However:

3. From an optimization perspective (for example, if we plan to use gradient descent), can you
see a reason why we should not take t too small?

Note: on a computer, it is necessary to use expression (2) rather than expression (1) to compute
f (and its derivatives). Indeed, expression (1) can lead to overflow when ¢ is small because
it involves computing exponentials of possibly large numbers. In contrast, expression (2) only
involves exponentials of nonpositive numbers. Still, even with expression (2), evaluating f and its
derivatives can get tricky numerically when ¢ is small.
5. Norms. Let &£ be a Euclidean space.

1. Show that any norm on £ is convex.

2. Show that any squared norm on & is convex.

Interestingly, a norm is never differentiable at = 0. Do you see why? However:

3. Let (-,-) be an inner product on £ and || - || the associated norm (that is, ||z|| = /(z, x) for
all x € ). Prove that the squared norm x + ||z||? is differentiable.

A norm may not be differentiable if it is not derived from an inner product. Can you come up
with an example?



