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1. Strict and strong.

1. Give an example of a function f : R → R which is convex but not strictly convex.

2. Give an example of a function f : R → R which is strictly convex but not strongly convex.

3. Give an example of a function f : R → R which is strictly convex yet not bounded below.

4. Give an example of a function f : R → R which is strictly convex and bounded below yet
does not have a minimum.

2. Quadratic functions. Let E = Rn with the usual inner product and let f(x) = 1
2
x⊤Ax +

b⊤x+ c.

1. Show that f is convex if and only if A ⪰ 0.

2. Show that f is strictly convex if and only if A ≻ 0.

3. Show that f is µ-strongly convex if and only if A ⪰ µI. What is the best choice of µ is terms
of A?

3. Jensen’s inequality. Let E be a linear space. Let f : E → R be a convex function. Show
that for all x1, . . . , xn ∈ E and any λ1, . . . , λn ≥ 0 such that λ1 + · · ·+ λn = 1 we have

f(λ1x1 + · · ·+ λnxn) ≤ λ1f(x1) + · · ·+ λnf(xn).

Hint: proceed by induction on n.
We call the quantity λ1x1 + · · · + λnxn a convex combination of the points x1, . . . , xn. The

result that you proved shows that if X is a discrete random variable taking values x1, . . . , xn ∈ E
with probabilities p1, . . . , pn respectively, then we have

f(E[X]) ≤ E[f(X)],

where E denotes mathematical expectation. This inequality generalizes to any random variable
X.
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4. Log-sum-exp. If you prefer you can consider the following exercise with k = 2.

1. Show that the log-sum-exp function is convex from Rk to R (t > 0 is a fixed, real parameter):

f(x) = t log

(
k∑

i=1

exi/t

)
. (1)

This function is often used in applications because it is a smooth approximation of the maximum
function. Indeed:

2. With x̄ = maxi xi show that

x̄ ≤ f(x) = x̄+ t log

(
k∑

i=1

e
xi−x̄

t

)
≤ x̄+ t log(k). (2)

Thus, the smaller t is, the better the approximation. However:

3. From an optimization perspective (for example, if we plan to use gradient descent), can you
see a reason why we should not take t too small?

Note: on a computer, it is necessary to use expression (2) rather than expression (1) to compute
f (and its derivatives). Indeed, expression (1) can lead to overflow when t is small because
it involves computing exponentials of possibly large numbers. In contrast, expression (2) only
involves exponentials of nonpositive numbers. Still, even with expression (2), evaluating f and its
derivatives can get tricky numerically when t is small.

5. Norms. Let E be a Euclidean space.

1. Show that any norm on E is convex.

2. Show that any squared norm on E is convex.

Interestingly, a norm is never differentiable at x = 0. Do you see why? However:

3. Let ⟨·, ·⟩ be an inner product on E and ∥ · ∥ the associated norm (that is, ∥x∥ =
√

⟨x, x⟩ for
all x ∈ E). Prove that the squared norm x 7→ ∥x∥2 is differentiable.

A norm may not be differentiable if it is not derived from an inner product. Can you come up
with an example?
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